Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Structural and functional heterogeneity is a consequence of the weak noncovalent interactions that direct the formation of organic materials from solution precursors. While covalent tethering of solution-phase assemblies provides a compelling strategy to enhance intermolecular order, the effects of this tethering strategy on the formed solid-state materials remain unestablished. This work uses pump–probe microscopy to compare excited-state dynamics in thin films fabricated from tethered perylene bisimide assemblies to those fabricated from noncovalent assemblies. On average, tethered films exhibit faster and more homogeneous excited-state lifetimes, consistent with stronger and more uniform intermolecular coupling. Optical measurements of excited-state diffusion show that the tethered film has ∼75% faster transport than the control film. Kinetic Monte Carlo modeling suggests that the reduction of site energetic disorder is sufficient to quantitatively explain the difference in diffusion coefficients. These results provide strong support that covalent tethering is a promising strategy to enhance the structural and energetic ordering in molecular materials.more » « less
-
We describe the use of resonant amplification of light propelling forces for selective separation of fluid-suspended dielectric microparticles. The force amplification and the selectivity of the method is achieved using the whispering gallery mode resonances of the microparticles. The selectivity is determined by the inverse of the quality factor (Q) of the resonances in liquid (with Q ∼ 10^4 -10^6). We demonstrate that the evanescent field around a tapered optical fiber fed with ∼ 20 mW power from a 1064 nm laser can selectively move polystyrene microspheres of up to 20 μm in diameter through distances of more than 50 μm, thereby establishing that the technique is sufficient for efficient separation.more » « less
An official website of the United States government
